\(\int \frac {\sec ^{\frac {3}{2}}(c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [238]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 191 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=-\frac {4 C \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {(A-5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {4 C \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {(A-5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A+C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

1/3*(A-5*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/a^2/d/(1+sec(d*x+c))-1/3*(A+C)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(
d*x+c))^2+4*C*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d-4*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(
sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d+1/3*(A-5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4170, 4104, 3872, 3856, 2720, 3853, 2719} \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {(A-5 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a^2 d (\sec (c+d x)+1)}+\frac {(A-5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {4 C \sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {4 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[In]

Int[(Sec[c + d*x]^(3/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

(-4*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + ((A - 5*C)*Sqrt[Cos[c + d*x]]
*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (4*C*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a^2*d) + ((A
 - 5*C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a^2*d*(1 + Sec[c + d*x])) - ((A + C)*Sec[c + d*x]^(5/2)*Sin[c + d*
x])/(3*d*(a + a*Sec[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4170

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*
(2*m + 1))), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b
*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x
] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (-\frac {3}{2} a (A-C)-\frac {1}{2} a (A+7 C) \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2} \\ & = \frac {(A-5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A+C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \sqrt {\sec (c+d x)} \left (-\frac {1}{2} a^2 (A-5 C)-6 a^2 C \sec (c+d x)\right ) \, dx}{3 a^4} \\ & = \frac {(A-5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A+C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {(A-5 C) \int \sqrt {\sec (c+d x)} \, dx}{6 a^2}+\frac {(2 C) \int \sec ^{\frac {3}{2}}(c+d x) \, dx}{a^2} \\ & = \frac {4 C \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {(A-5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A+C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {(2 C) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{a^2}+\frac {\left ((A-5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2} \\ & = \frac {(A-5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {4 C \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {(A-5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A+C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\left (2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{a^2} \\ & = -\frac {4 C \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {(A-5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {4 C \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {(A-5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A+C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.22 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.53 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \left (i A-29 i C-2 i (A+25 C) \cos (c+d x)+i A \cos (2 (c+d x))-17 i C \cos (2 (c+d x))+4 i C e^{-i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+8 (A-5 C) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-i \sin \left (\frac {1}{2} (c+d x)\right )\right )+12 C \sin (c+d x)+A \sin (2 (c+d x))+7 C \sin (2 (c+d x))\right ) \left (\cos \left (\frac {1}{2} (c+3 d x)\right )+i \sin \left (\frac {1}{2} (c+3 d x)\right )\right )}{6 a^2 d (1+\sec (c+d x))^2} \]

[In]

Integrate[(Sec[c + d*x]^(3/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]^(5/2)*(I*A - (29*I)*C - (2*I)*(A + 25*C)*Cos[c + d*x] + I*A*Cos[2*(c + d*x)] -
(17*I)*C*Cos[2*(c + d*x)] + ((4*I)*C*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1
/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^(I*(c + d*x)) + 8*(A - 5*C)*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*Ellip
ticF[(c + d*x)/2, 2]*(Cos[(c + d*x)/2] - I*Sin[(c + d*x)/2]) + 12*C*Sin[c + d*x] + A*Sin[2*(c + d*x)] + 7*C*Si
n[2*(c + d*x)])*(Cos[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(6*a^2*d*E^(I*d*x)*(1 + Sec[c + d*x])^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(449\) vs. \(2(223)=446\).

Time = 1.92 (sec) , antiderivative size = 450, normalized size of antiderivative = 2.36

method result size
default \(-\frac {-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-48 C \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A +43 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A +37 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(450\)

[In]

int(sec(d*x+c)^(3/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/6*(-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-5*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+12*C*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),
2^(1/2))-5*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+12*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2
*c)-48*C*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^6+2*(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)*(A+43*C)*sin(1/2*d*x+1/2*c)^4-(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*(A+37*C)*sin(1/2*d*x+1/2*c)^2)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/
sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 327, normalized size of antiderivative = 1.71 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {{\left (\sqrt {2} {\left (-i \, A + 5 i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (i \, A - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A - 5 i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-i \, A + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 \, {\left (i \, \sqrt {2} C \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} C \cos \left (d x + c\right ) + i \, \sqrt {2} C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 \, {\left (-i \, \sqrt {2} C \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} C \cos \left (d x + c\right ) - i \, \sqrt {2} C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (12 \, C \cos \left (d x + c\right )^{2} + {\left (A + 19 \, C\right )} \cos \left (d x + c\right ) + 6 \, C\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(-I*A + 5*I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(I*A - 5*I*C)*cos(d*x + c) + sqrt(2)*(-I*A + 5*I*C))*w
eierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(I*A - 5*I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(
-I*A + 5*I*C)*cos(d*x + c) + sqrt(2)*(I*A - 5*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))
- 12*(I*sqrt(2)*C*cos(d*x + c)^2 + 2*I*sqrt(2)*C*cos(d*x + c) + I*sqrt(2)*C)*weierstrassZeta(-4, 0, weierstras
sPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 12*(-I*sqrt(2)*C*cos(d*x + c)^2 - 2*I*sqrt(2)*C*cos(d*x + c
) - I*sqrt(2)*C)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(12*C*c
os(d*x + c)^2 + (A + 19*C)*cos(d*x + c) + 6*C)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*
d*cos(d*x + c) + a^2*d)

Sympy [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A \sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sec ^{\frac {7}{2}}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

[In]

integrate(sec(d*x+c)**(3/2)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**2,x)

[Out]

(Integral(A*sec(c + d*x)**(3/2)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) + Integral(C*sec(c + d*x)**(7/2)/(s
ec(c + d*x)**2 + 2*sec(c + d*x) + 1), x))/a**2

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

[In]

int(((A + C/cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + a/cos(c + d*x))^2,x)

[Out]

int(((A + C/cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + a/cos(c + d*x))^2, x)